首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14116篇
  免费   1102篇
  国内免费   3308篇
安全科学   900篇
废物处理   259篇
环保管理   4021篇
综合类   8442篇
基础理论   1465篇
环境理论   1篇
污染及防治   1142篇
评价与监测   1281篇
社会与环境   814篇
灾害及防治   201篇
  2024年   35篇
  2023年   199篇
  2022年   315篇
  2021年   354篇
  2020年   432篇
  2019年   362篇
  2018年   329篇
  2017年   490篇
  2016年   621篇
  2015年   719篇
  2014年   691篇
  2013年   999篇
  2012年   1040篇
  2011年   1116篇
  2010年   802篇
  2009年   808篇
  2008年   616篇
  2007年   1014篇
  2006年   967篇
  2005年   759篇
  2004年   654篇
  2003年   672篇
  2002年   576篇
  2001年   472篇
  2000年   454篇
  1999年   389篇
  1998年   267篇
  1997年   256篇
  1996年   238篇
  1995年   203篇
  1994年   183篇
  1993年   164篇
  1992年   126篇
  1991年   102篇
  1990年   80篇
  1989年   82篇
  1988年   73篇
  1987年   69篇
  1986年   43篇
  1984年   47篇
  1983年   57篇
  1982年   58篇
  1981年   73篇
  1980年   80篇
  1979年   72篇
  1978年   50篇
  1977年   46篇
  1973年   44篇
  1972年   38篇
  1971年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
降水空间异质性对非点源关键源区识别面积变化的影响   总被引:3,自引:2,他引:1  
针对地形起伏和降水空间差异较大的农业区非点源污染问题,基于SWAT模型评估了阿什河流域在异质性降水和均匀降水两种情景下总氮、总磷关键源区空间变化规律,统计了两种情景下识别的关键源区面积变化,并分析其与降水特征参数的关系.结果表明,降水量一定时,两种情景下识别的总氮、总磷关键源区面积变化趋势大致相同,且总磷关键源区面积不易受降水空间异质性的影响,但总氮关键源区面积却明显受到其影响.对各年份总氮和总磷关键源区面积与降水特征参数的相关分析表明,总磷关键源区面积与当年降水量呈显著正相关,而总氮关键源区面积却与前一年降水量呈显著正相关.研究结果对进一步探讨降水这一重要驱动因子的不确定性对非点源污染关键源区的影响,以及农业非点源污染的治理具有重要意义.  相似文献   
52.
地表直接径流和基流均是流域非点源氮/磷养分输出的重要水文途径.科学认识和定量模拟基流氮/磷养分输出对于准确解析水源地水体非点源污染来源至关重要.基于Load Estimator模型和数字滤波算法,建立了定量水源地基流氮素输出的方法体系.以浙江省珊溪水源地的玉泉溪流域为例,利用玉泉溪2010-01—2013-12期间逐月总氮(TN)水质监测数据和逐日流量数据,展示了该方法的计算过程.结果表明,本文建立的水源地基流氮素输出定量方法结果合理,模拟精度高,决定系数和纳什系数分别为0.83和0.80;玉泉溪流域2010—2013年TN负荷量为141.21~274.68 t·a~(-1),平均208.63 t·a~(-1),年基流TN负荷量为84.39~168.68 t·a~(-1),平均127.69 t·a~(-1);基流对玉泉溪年均TN负荷量贡献率高达60%以上,流域基流养分输出对地表水体的污染应引起足够重视.  相似文献   
53.
为探究关中平原降水氢氧稳定同位素特征及其水汽来源,本研究选取关中腹地的杨凌站点次降水为研究对象,利用当地2015~2018年间的98场次降水样品及同期气象资料,分析该地区降水氢氧稳定同位素(δ~2H、δ~(18)O和δ~(17)O)组成特征及其影响因素,建立当地大气降水线和三氧同位素大气降水线方程,并利用δ~(18)O、d-excess和~(17)O-excess指标尝试探讨当地可能存在的降水水汽来源,定量描述海洋和内陆源水汽对区域降水的贡献.结果表明,杨凌地区降水氢氧稳定同位素存在明显的季节性变化,同位素组成雨季(5~10月)贫化,旱季(11月~次年4月)富集;当地大气降水线的斜率和截距分别为7.7和9.1,说明研究区降水受到一定程度的蒸发分馏影响;三氧同位素大气降水线斜率为0.528,介于海水平衡分馏斜率(0.529)与水汽扩散斜率(0.518)之间,表明研究区处于海洋气团向内陆干旱区迁移的路径上.综合分析δ~(18)O、d-excess和~(17)O-excess,发现研究区降水受到来自东南季风的暖湿气团和来自西风的干冷气团的共同贡献,其中约有55%~79%的降水水汽来源于海洋,主要集中于6~8月; 21%~45%的水汽来源于内陆和局地蒸发,主要集中于10月~次年4月. 5月和9月降水水汽来源复杂,可能受海洋水汽和内陆水汽的共同补给.  相似文献   
54.
连云港海州湾海域表层水体和沉积物中微塑料的分布特征   总被引:8,自引:7,他引:1  
近年来,微塑料成为国内外广泛关注的新型海洋污染物,海湾作为人类在海岸环境中的主要活动地区,一直是海洋污染物聚集地,但我国对近岸大部分中小型海湾环境中微塑料的分布状况仍鲜见报道.为了解我国近岸中小型海湾的微塑料污染特征,本研究以江苏省海州湾海域表层海水和沉积物中采集的微塑料为样本,通过定性和定量方法研究了表层水和沉积物中微塑料主要类型和丰度及空间分布特征.结果表明,海州湾表层水体和沉积物中的微塑料丰度分别为(2.60±1.40)个·m~(-3)和(0.33±0.26)个·g~(-1),在国内近岸环境(表层水0.33~545.00个·m~(-3),沉积物0.07~2.58个·g~(-1))中,海州湾表层水中的微塑料丰度处于较低水平,但沉积物中的微塑料处于较高水平.塑料污染物的粒径大小在水体中分布范围为0.08~13.48 mm,其中,微塑料(粒径5 mm)占91.8%,塑料污染物在沉积物中粒径的分布范围为0.04~14.74 mm,微塑料占91.4%,水体和沉积物中60%以上的微塑料粒径小于2.00 mm.海州湾海域微塑料的形态以纤维状为主,占92%;颜色以蓝色和黑色为主,占70%;材质以人造纤维和PET为主,占79.4%.表层水中微塑料的分布与悬浮物浓度分布具有显著的相关性(P0.05),沉积物中微塑料的分布受多方面因素影响,其分布规律与表层水中微塑料的分布以及沉积物中粒径的分布都具有较大差异性.通过对微塑料的形态特征以及成分组成的分析表明,海州湾的微塑料主要来源于海水养殖和沿岸陆源输入.  相似文献   
55.
基于不同废污泥源的短程反硝化快速启动及稳定性   总被引:1,自引:1,他引:0  
张星星  王超超  王垚  徐乐中  吴鹏 《环境科学》2020,41(8):3715-3724
为探究不同废污泥源快速启动短程反硝化和实现稳定NO_2~--N积累的可行性,在3个完全相同的SBR反应器(S1、S2和S3)分别接种:实验室城市污水反硝化除磷系统排泥、城市污水厂剩余污泥及河涌底泥,比较其短程反硝化启动快慢和NO_2~--N积累特性,考察系统短程反硝化活性和NO_3~--N→NO_2~--N转化性能,并从微生物学角度分析反应器功能菌群特征.结果表明,在乙酸钠为唯一碳源、高碱度和适宜COD/NO_3~--N比进水条件下,3个SBR短程反硝化反应器在短时间内均能够成功启动,系统平均NO_3~--N→NO_2~--N转化率为S1 S2 S3(75. 92% 73. 36% 69. 90%).同时发现持续低温条件下S1和S2呈现不同程度的短程反硝化性能恶化趋势,但S3能够稳定维持良好NO_2~--N积累性能.微生物高通量测序表明,变形菌门和拟杆菌门居PD系统主导地位,3个短程反硝化反应器NO_2~--N积累关键功能菌属Thauera属丰度差异明显:S3 S1 S2(25. 09% 4. 71% 3. 60%),表明S3具备稳定高效的NO_2~--N积累性能,同时高丰度Thauera属可能是维持低温短程反硝化活性的重要原因.  相似文献   
56.
过氧化钙复合片剂对水体修复和底泥磷控制的作用   总被引:1,自引:1,他引:0  
以受污染水体及底泥为研究对象,制备了2种过氧化钙复合片剂(CPCTs),并考察了在混合投加方式下对上覆水的影响及控磷效果.复合片剂由过氧化钙(CaO_2)、灼烧净水污泥、羟丙基甲基纤维素(HPMC)等粉末直压制成,其中B片剂含硫酸亚铁(FeSO_4),A不含. 2种片剂吸附效果均较好地符合Langmuir和Freundlich等温模型,对磷的理论最大吸附量分别达110.908 mg·g~(-1)和106.390 mg·g~(-1).底泥模拟实验结果表明,与对照组相比,A、B组上覆水pH提高,Chl-a浓度降低(42.75%和60.82%),DO浓度提高(53.73%和63.30%). A、B组上覆水DIP浓度变化均显著,分别降低了54.93%和25.11%.对于底泥间隙水DIP, A、B组Ⅰ层(0~2 cm)变化均显著,分别降低了74.81%和65.66%;B组Ⅱ层(2~4 cm)变化显著,平均浓度降低了46.23%,而A组Ⅱ层变化不显著;A、B组Ⅲ层(4~6 cm)变化不显著.对于底泥形态磷,A、B组NH_4Cl-P占TP的比例显著提高(Ⅰ层:16.87%和13.11%;Ⅱ层:12.99%和11.02%),Al-P占TP的比例显著降低(Ⅰ层:7.58%和13.91%;Ⅱ层:9.86%和7.28%),其余形态磷变化不显著.A、B组表层底泥微生物的活性均明显提高,A组较深层底泥微生物活性提高更明显.  相似文献   
57.
长江经济带突发水污染风险分区研究   总被引:4,自引:0,他引:4  
长江经济带突发水污染事件频发,对区域人群健康和生态安全造成严峻挑战.环境风险分区是环境风险管理的基础和有效工具.本研究以2015年为基准年,基于环境统计数据、DEM数据、水质监测断面数据和基础地理数据,综合考虑了水系流向、水系级别及水质等因素,以1 km×1 km的网格为基本单元,对长江经济带开展突发水污染风险分区.结果表明:①高风险区面积为3348.9 km~2,占评估区总面积的0.16%;较高风险区面积为26030.7 km~2,占比1.27%;中风险区面积为97971.1 km~2,占比4.79%;低风险区面积为1916838.7 km~2,占比93.77%;②从沿长江干流两岸分布来看,高风险区面积沿长江上游至下游呈逐渐增加趋势,主要集中分布在重庆市中部、湖北省东部、安徽省东部、江苏省中西部、浙江省北部、上海市西部等地;③从沿长江主要支流两岸分布来看,高风险区主要分布在嘉陵江南段、乌江南段、汉水东段、湘江北段、赣江北段等.研究结果可为长江经济带生态环境管理提供科学依据.  相似文献   
58.
为削减微污染水库中氮素的浓度,通过对西安市李家河水库沉积物进行定向富集驯化,筛选出以Pseudomonas菌为主、具有高效好氧反硝化特性的混合菌群-A1.摇床实验表明,贫营养好氧反硝化菌群A1在15h时硝酸盐氮去除率可达93.39%,硝酸盐氮平均去除速率为0.2073mg/(L·h);总氮去除率为52.11%,总氮平均去除速率为0.1153mg/(L·h),无亚硝酸盐积累.氮平衡分析表明,约45%的初始氮被去除转化为气体产物.响应面法(RSM)结果表明,C/N比9.96,温度22.67℃,pH8.01,转速91r/min,溶解氧8.55mg/L是去除总氮(TN)的最优条件.  相似文献   
59.
根据国家生态环境状况评价技术规范,基于1990,2000,2010和2015年四期的遥感和地理信息数据对赤峰市生态环境状况进行评估.结果表明:赤峰市的生态环境变化状况可以分为3个阶段,即退化期(1990~2000年),恢复期(2000~2010年)和平稳期(2010~2015年).4a生态环境状况指数(EI)分别为70.58、61.21、67.63和68.35,生态环境状况整体为良.赤峰市1990~2015年生态环境状况变化度(△EI)为-2.23,略微变差.从退化时期到恢复时期,△EI由负变正,表明赤峰市生态环境状况在2000~2010年期间有所改善;从恢复时期到平稳时期,|△EI|变小,表明2010~2015年间生态环境状况变好趋势减缓.城市化进程和水资源短缺是赤峰市生态环境状况转好趋势减缓的主要原因,因此需要进一步开展生态保护工程,并合理利用地下水资源.  相似文献   
60.
油脂对红壤结构性质与水流运动特征的影响   总被引:1,自引:0,他引:1  
本文通过室内灌水入渗试验,研究了灌溉水油脂浓度(0,1.0,3.0和10.0g/L)、灌水频率(1d1次,2d1次,4d1次)和灌溉模式(纯清水灌溉,纯含油脂灌溉水灌溉,含油脂灌溉水-清水交替灌溉)对受灌土壤结构性质与水流运动特征的影响.结果显示,随灌水进入到受灌土壤中的油脂主要集中在优先流通道中快速运动,优先流湿润锋处的土壤油脂浓度较高且不受灌溉水中油脂浓度的影响,表明即便是采用较低油脂浓度的灌溉水灌溉,依然对地下水系统存在较高的污染风险;高频率、低定额的含油脂灌溉水灌溉有利于进入到受灌土壤中的油脂向深层土壤运动,使得斥水性土层厚度增大,从而导致入渗水流运动的不确定性及地下水系统的污染风险均增大;油脂对受灌土壤团聚体的再团聚作用只有在其浓度较高时才能形成,含油脂灌溉水-清水交替灌溉因降低了受灌土壤的油脂浓度反而导致土壤团聚体分散和破碎.研究成果对再生水和原污水农田灌溉制度设计具有参考价值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号